Relapsing Remitting Multiple Sclerosis: Treatment Update

Helena Bulka, DO
Henry Ford Hospital
June 18th, 2021

Outline

- Why should we treat MS
- Rational for early treatment goals
- Treatment consideration in clinical practice
- DMT overview

The Natural Course of Relapsing-Remitting MS

Despite treatment, approximately one quarter (21-27%) of patients worsened by 2.5 point on the EDSS within 2 years.

Optimize Therapy Before Disability Accumulates

DMT overview

Does Early Treatment of Patients With CIS Delay Development of CDMS?

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment (vs Placebo)</th>
<th>Conversion to CDMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-Up</td>
<td>On Therapy</td>
<td>Placebo</td>
</tr>
<tr>
<td>CHAMPS</td>
<td>Placebo 30 mg IV q4W</td>
<td>3 years</td>
</tr>
<tr>
<td>B10MS</td>
<td>Placebo 44 mg 125 D2/Q2</td>
<td>2 years</td>
</tr>
<tr>
<td>BENEFIT</td>
<td>Placebo 250 mg 2G every other</td>
<td>2 years</td>
</tr>
<tr>
<td>PRO-16</td>
<td>Placebo 20 mg 12G/D</td>
<td>2 years</td>
</tr>
<tr>
<td>MT-816</td>
<td>Placebo 44 mg 125 D2/Q2</td>
<td>2 years</td>
</tr>
<tr>
<td>TOPIC</td>
<td>Placebo 1 mg OD</td>
<td>2 years</td>
</tr>
</tbody>
</table>

Note: CHAMPS Placebo 30 mg IV q4W; B10MS Placebo 44 mg 125 D2/Q2; BENEFIT Placebo 250 mg 2G every other; PRO-16 Placebo 20 mg 12G/D; MT-816 Placebo 44 mg 125 D2/Q2; TOPIC Placebo 1 mg OD.
Current Standard Treatment Outcomes In MS

▪ Reduce relapses; extend time b/w relapses
▪ Reduce severity of relapse
▪ Prevent or reduce the number (lesion burden), size of new lesions on MRI in order to prevent axonal damage in central nervous system (CNS) and mitigate brain atrophy.
▪ Prevent or extend the time to onset of secondary progressive stage
▪ Extend time during which there is no evidence of disease activity (NEDA)

NEDA in Clinical Studies

<table>
<thead>
<tr>
<th>Clinical Study</th>
<th>Study Duration, y</th>
<th>Patients With NEDA Status, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVANCE</td>
<td>1</td>
<td>Placebo, 15%; pegylated interferon-beta-1a every 2 weeks, 34%</td>
</tr>
<tr>
<td>AFFIRM</td>
<td>1</td>
<td>Placebo, 15%; natalizumab, 47%</td>
</tr>
<tr>
<td>SELECT</td>
<td>1</td>
<td>Placebo, 11%; dimethyl fumarate, 39%</td>
</tr>
<tr>
<td>AFFIRM</td>
<td>2</td>
<td>Placebo, 7%; natalizumab, 27%</td>
</tr>
<tr>
<td>CARE-MS I</td>
<td>2</td>
<td>SC interferon-beta-1a, 27%; alemtuzumab, 39%</td>
</tr>
<tr>
<td>CARE-MS II</td>
<td>2</td>
<td>SC interferon-beta-1a, 13%; alemtuzumab, 32%</td>
</tr>
<tr>
<td>CLARITY</td>
<td>2</td>
<td>Placebo, 16%; cladribine, 46%</td>
</tr>
<tr>
<td>CLIMB</td>
<td>2</td>
<td>Early MS, 24%; established MS, 33%</td>
</tr>
<tr>
<td>FREEDOMS</td>
<td>2</td>
<td>Placebo, 13%; fingolimod, 33%</td>
</tr>
<tr>
<td>DEFINE</td>
<td>2</td>
<td>Placebo, 15%; dimethyl fumarate, 28%</td>
</tr>
<tr>
<td>Consalo</td>
<td>3</td>
<td>IM interferon-beta-1a alone, 31%; glatiramer acetate alone, 19%; glatiramer acetate and IFN-beta-1a, 31%</td>
</tr>
<tr>
<td>CLIMB</td>
<td>7</td>
<td>Early MS, 46%; established MS, 10%</td>
</tr>
</tbody>
</table>

Choosing the Optimal Individualized Treatment Regimen

▪ Patient factors
▪ Disease factors
▪ Drug factors

NEDA-4

▪ No relapse
▪ No disability progression
▪ No MRI activity
▪ Annualized Brain volume loss less than/equal to 0.4

Therapy selection: Factors to Consider
Identifying Active and Aggressive Disease

Clinical Factors
- Male gender
- Older age of onset
- African American/Hispanic
- Onset with disabling symptoms; cerebellar and spinal cord disease
- Poor recovery from relapses
- Multifocal involvement at onset
- Early cognitive dysfunction

Paraclinical Factors
- High MRI lesion burden at presentation
- New T2 lesions in the first year of symptom onset
- Brainstem, Cerebellum or Spinal Cord lesions
- Brain/spinal cord atrophy

Neurofilament Light Protein

- Proposed biomarker for MS disease activity
- Structural component of neurons and axons
- Released in CSF after axonal injury
- Elevated during relapse or active lesion
- Levels decrease with effective DMT
- Initial level in CSF may predict disease course
- Studies have shown that it can be detected in serum and it does correlate to CSF levels

FDA Approved disease modifying agents

Indication:
- Relapsing Remitting MS (RRMS)
- Clinically Isolated Syndrome (CIS) with high probability to develop clinical definitive MS
- Active Secondary Progressive MS (SPMS)
- Primary Progressive MS (PPMS)

Cells, Molecules, and Therapies.

Injectable	Oral	Intravenous
Avonex (interferon beta-1a) | Aubagio (teriflunomide) | Ocrevus (ocrelizumab)
Plegridy (pegylated interferon-1a) | Tecfidora (dimethyl fumarate) | Tysabri (natalizumab)
Betaseron [interferon beta-1b] | Vumerity (diroximel fumarate) | Lambrada (alemtuzumab)
Extavia (interferon beta-1b) | Bapiertam (monomethyl fumarate) | Novantrone (mitoxantrone)
Reolif (interferon beta 1a) | Gilenya (fingolimod) | Betaseron (interferon beta-1b)
Copaxone (glatiramer acetate) | Mayzent (siponimod) | Kesimpta (ofatumumab)
Glatopa (glatiramer acetate) | Zeposia (ozanimod) | Mavenclad (cladribine)
Kesimpta (ofatumumab) | Nofizzit (natalizumab) | Feltista (copaxone)
Types of DMTs by Effects to Immune System

<table>
<thead>
<tr>
<th>Type</th>
<th>Approved Therapies</th>
<th>Emerging Therapies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunomodulation</td>
<td>IFNs, glatiramer acetate, dimethyl fumarate, diroximel fumarate, monomethyl fumarate, teriflunomide</td>
<td>NA</td>
</tr>
<tr>
<td>General Imunosuppression</td>
<td>Mitoxantrone,</td>
<td>NA</td>
</tr>
<tr>
<td>Immune-selective blockade</td>
<td>Natalizumab</td>
<td>NA</td>
</tr>
<tr>
<td>Immune-selective-sequestering</td>
<td>Fingolimod, SIRONIMOD, Ozanimod</td>
<td>Ponemod, Oponesimod</td>
</tr>
<tr>
<td>Immune-selective-depleting</td>
<td>Alemtuzumab, Ofatumumab, Ublituximab</td>
<td></td>
</tr>
</tbody>
</table>

DMT Overview

Interferons (beta 1a, beta 1b, pegylated)
(Avonex, Rebif/Extavla, Betaseron, Plegridy)

<table>
<thead>
<tr>
<th>MOA</th>
<th>Effects on immune cells and mediators</th>
<th>Safety issues</th>
</tr>
</thead>
</table>
| • Activation of IFN on leukocytes | • ↓ migration of inflammatory cells through the BBB
• ↓ production of pro-inflammatory cytokines
• ↑ anti-inflammatory cytokines | • ISR
• Cytopenias
• LFTs
• Hepatic injury
• Depression
• CHF
• Seizures |

Fumarates

- **Diroximel Fumarate (Vumerity)**
 - Significantly fewer days with individual GI symptoms and Impact Scale (IGISIS)
 - Lower discontinuation rates

- **Monomethyl Fumarate (Bafiertam)**
 - Active metabolite of Vumerity and Tecfidera
 - Lower GI side effects

Glatiramer acetate (Copaxone, Glatopa)

<table>
<thead>
<tr>
<th>MOA</th>
<th>Effects on immune cells and mediators</th>
<th>Safety issues</th>
</tr>
</thead>
</table>
| • MBP mimetic
• Competes with MBP antigens to bind with the MHC II | • Diverts T-cells response away from myelin
• ↓ production of pro-inflammatory cytokines (TH1)
• ↑ anti-inflammatory cytokines (Th2) | • ISR
• Post-injection reaction (flushing, chest pain, palpitations, anxiety, dyspnea, throat constriction, urticaria)
• Pregnancy Cat:B |

Dimethyl fumarate (Tecfidera), diroximel fumarate (Vumerity), monomethyl fumarate (Bafiertam)

<table>
<thead>
<tr>
<th>MOA</th>
<th>Effects on immune cells and mediators</th>
<th>Safety issues</th>
</tr>
</thead>
</table>
| • Activates nuclear factor-like 2 (NF2) | • ↓ lymphocyte count by 30%
• 6% lymph count <0.5x109/L | • Severe and/or persistent lymphopenia
• Flushing
• Pruritus, rash
• GI symptoms (less with newer fumarates)
• PML |

Monitoring

- CBC and diff, CMP prior to medication initiation
- Every three months for first year then every 6 months.
- Check baseline VZV IgG titer, hepatitis and TB status
Teriflunomide (Aubagio)

MOA
- Inhibits proliferation of activated T and B lymphocytes
- Inhibits mitochondrial dihydroorotate dehydrogenase

Effect on immune cells and mediators
- \downarrow neutrophils and lymphocytes by 15%
- 12% with lymphocytes, $0.8 \times 10^9/L$

Safety issues
- Hepatic injury
- Teratogenicity
- \uparrow blood pressure
- Alopecia
- Intestinal lung disease
- Headache
- GI symptoms
- Latent TB
- Neuropathy

Fingolimod (Gilenya), siponimod (Mayzent), ozanimod (Zeposia), ponesimod (Ponvory)

MOA
- S1P receptor modulator on lymphocytes. Preventing egress form secondary lymphoid organs to peripheral circulation
- S1P1 and S1P5 receptor modulator (siponimod, ozanimod)
- S1P1 modulator (ponesimod)

Effects on immune cells and mediators
- \downarrow circulating lymphocytes by 20-30%

Safety issues
- LFTs
- Hepatic injury
- Bradycardia
- New generation S1P receptor modulators (selective affinity for S1P1 and S1P5 receptor) less prone to cause bradycardia due to utilization of drug titration
- Macular edema
- \uparrow blood pressure
- PRES
- Pulmonary events
- Infections (HSV, Cryptococcus)
- Skin cancer
- PML

Monitoring

- CBC and diff, CMP prior to medication initiation.
- Check baseline VZV IgG titer, hepatitis and TB status
- CBC with diff, LFTs (monthly for the first 6 months), patients must use reliable contraception, wash out (if needed).
- Women who wish to become pregnant must stop therapy and undergo accelerated elimination procedure (cholestyramine or activated charcoal for 11 days).

New S1P modulators

- Shorter half life
- Minimizes cardiac issues – does not bind to S1P3 with high affinity also slow drug titration less cardiac effects
- Selective sphingosine 1-phosphate (S1P)-1 and 5 receptor.
 - May cross blood-brain-barrier and decrease production of TNF alpha, IL-6, IL-17 by astrocytes and microglia, this can lead to less demyelination modulation reduces accumulation of neurological impairment and slows progression of brain atrophy.

Ozanimod

- Contraindicated in patients taking MOA inhibitors
- Monoamine oxidase (MOA) is an enzyme that is responsible for breakdown of tyramine
- Ozanimod metabolites inhibit MOA that may result in higher levels of tyramine and hypertensive crisis
- Patients need to avoid food and beverages that would result in a total of more than 150 mg daily of tyramine while on ozanimod.
Monitoring

- Eye and skin examinations (macular edema and basal cell carcinoma) yearly
- Varicella-Zoster Virus IgG prior to starting medication if negative vaccinate 2-4 weeks prior to starting med, PFTs (if clinically indicated)
- EKG prior to starting treatment with all
- CBC with diff, LFTs every 6 months.
- Treatment interruption >12-14 days need repeat of first dose observation (fingolimod)

Monoclonal Antibodies

- **Natalizumab**
 - Target: CD49, α4-integrin, leukocytes
- **Alemtuzumab**
 - Target CD52, T cells, B cells, APC
- **Ocrelizumab**
 - Humanized mAb, Target CD20, mature B cells
- **Ofatumumab**
 - Humanized mAb, Target different site of CD20, mature B cells

Natalizumab

MOA
- Inhibits VLA-4 integrins
- Prevents leukocyte migration across the BBB

Effects on immune system
- ↑ circulating leukocytes except neutrophils

Safety profile
- PML
- Hypersensitivity reactions
- Hepatic injury
- Infections (HSV, meningitis, hep b)

Factors that Increase PML Risk

- Anti-JCV antibody positive status
- Receiving an immunosuppressant (such as mitoxantrone, azathioprine, methotrexate, cyclophosphamide, mycophenolate mofetil) prior to receiving natalizumab
- Natalizumab treatment duration (especially >2 years)
- Titer index over 0.9
- Serum JV Ab check every 6 months (<2 yr tx); every 3 months > 2yrs of tx

Alemtuzumab

MOA
- Targets CD52 on lymphocytes
- Depletes T and B cells, monocytes, macrophages and dendritic cells

Effects on immune system
- Rapid ▲ of circulating T and B Cells
- Long lasting effects on adaptive immunity

Safety issues
- Infusion reactions
- Thyroid dysfunction-30%
- ITP- 1% one death in trial
- Glomerulonephritis-0.1%
- Infections (herpes, fungal, listeria, monocida)
- Cancer Risk: thyroid, melanoma and lymphoma.

Safety Considerations with Alemtuzumab

Warnings
- Infusion reaction
 - >60% of patients in clinical trials experienced infusion reactions, 2% serious. Rash, headaches, influenza-like symptoms: less common transient recurrence of previous MS symptoms
- Autimmune thyroid disease (20%)
- Autimmune Thrombocytopenia (10%)
- Glomerular nephropathies (3.3%)
- Malignancies: Melanoma (0.3%), Lymphoma
- Infections
- Pneumonitis

Monitoring and Precautions
- Restricted distribution under the REMS program
- Monthly blood tests
- TSH every 2 months.
- Obtain thyroid function tests prior to initiating treatment and every 3 months until 6 months after the last infusion.
- Monitor CBC prior to treatment and monthly until 48 months after last infusion.
- Monitor serum creatinine prior to treatment and monthly.
- Conduct baseline and yearly skin exams for melanoma.
- Delay treatment initiation in patients with active infections.
- Do administer live viral
Ocrelizumab

MOA
- Targets CD20 on B lymphocytes
- Antibody and cell mediated cytotoxicity

Effect on immune cells
- Depletion of pre-B cells, mature B cells and memory B cells
- Lymphoid stem cells and plasma cells are unaffected

Safety issues
- Infusion reactions
- Infection (URI, PML)
- Neoplasm?
- Breast

Ofatumumab (Kesimpta)

MOA
- Targets CD20 on B lymphocytes
- Antibody and cell mediated cytotoxicity

Effect on immune cells
- Depletion of pre-B cells, mature B cells and memory B cells
- Lymphoid stem cells and plasma cells are unaffected

Effect on immune system
- Injection site reaction
- Headache
- Myalgia
- Fever
- Fatigue
- Infection
- URI
- Hep B reactivation
- PML

Safety issues
- Malignancy
- Hematologic malignancies
- Ovarian carcinoma
- Pancreatic carcinoma
- Malignant melanoma (1.1% vs 0.5% placebo)
- URI
- Headache
- Lymphopenia
- Infections (TB, VZV, PML (none), liver problems and heart failure

Cladribine (Mavenclad)

MOA
- Purine analog that prevents DNA replication and reduces T and B cells.
- In cells phosphorylated into its toxic form by another enzyme deoxycytidine kinase, (DCK).
- Cells that have high concentration of DCK (T, B and NK cells) accumulate phosphorylated cladribine.

Effect on immune system
- Depletes 80% of peripheral B cells,
- 40-50% of total T-cells.
- Also affects NK Cells

Safety issues
- Malignancy
- Hematologic malignancies
- Ovarian carcinoma
- Pancreatic carcinoma
- Malignant melanoma (1.1% vs 0.5% placebo)
- URI
- Headache
- Lymphopenia
- Infections (TB, VZV, PML (none), liver problems and heart failure

Cladribine

- One or two pills depending on weight
- Two treatment weeks per year one month apart and repeated again on second year.
- 2 year treatment courses: 1.75 mg/kg/course divided into 2 treatment cycles
- Not to exceed 3.5 mg/kg cumulative dosage
- #mg tablet taken daily for 4 to 5 consecutive days, repeated one month later for another week - repeat cycle one year later.

Tests prior to treatment
- CBC and diff
- TB status
- HIV status
- VZV status
- Vaccination recommended for VZV IgG negative patients
- Pregnancy test

Monitoring
- Measure lymphocyte counts before each treatment course and at 2 and 6 months after each treatment course
- Absolute lymph count must be > 800 cells/mm3 before year 2 of treatment
- HSV prophylactic treatment if lymphocytes drop to 200
- Prescautions to prevent pregnancy must be maintained for at least 6 months after treatment (of either partner)
 Mitoxantrone (Novantrone)

MOA
- Intercalates with DNA causing strand breaks
- Inhibits DNA repair via inhibition of topoisomerase II leading to cytotoxicity

Effects on immune cells
- Reduction of leukocytes, mainly neutrophils and most lymphocyte subsets except for naive and activated T lymphocytes

Safety Issues
- Menstrual disorders
- Blue/Green urine
- Hair loss
- UTI/ URI
- Mouth sores
- Irregular heart beat
- Cardiotoxicity; CHF can happen years after cessation of therapy
- Acute myeloid leukemia

 Stem Cell Transplant

- Autologous hematopoietic stem cell transplant (HSCT)
 - Immunosuppression followed by infusion of autologous stem cell
 - "Re-booting of immune system"
 - Stem cells derived form bone marrow or blood are stored and the rest of the individual’s immune cells are depleted by chemotherapy then stem cells re-introduced.
 - Potent durable benefits
 - Young, mild to mod disability and highly active MS benefit

 BEAT-MS

- Best Available Therapies (BAT) versus Autologous Hematopoietic Stem Cell Transplant (AHSCT) for Multiple Sclerosis
- Comparing BAT vs AHSCT over 72 months in RRMS and continued MS disease activity despite treatment with DMTs
- BAT agents: natalizumab, alemtuzumab, ocrelizumab or rituximab
- Prospective 1:1 randomized controlled trial of 156 participants
- Age less than 55, EDSS less than 5.5
- Primary Endpoint: MS release free survival

 Efficacy of DMTs for MS

<table>
<thead>
<tr>
<th>DMT</th>
<th>ARR reduction*</th>
<th>MRRI**</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN beta 2b</td>
<td>31% vs placebo</td>
<td>↓ 0.3 % lesion area</td>
</tr>
<tr>
<td>IFN beta 1a IM</td>
<td>31% (PTX vs placebo)</td>
<td>↓ 0.4 % lesion area</td>
</tr>
<tr>
<td>IFN beta 1a SC</td>
<td>34% (PET vs placebo)</td>
<td>↓ 0.4 % lesion area</td>
</tr>
<tr>
<td>PegIFN beta 1a</td>
<td>36% vs placebo</td>
<td>↓ 0.4 % lesion area</td>
</tr>
<tr>
<td>Gilasaximab</td>
<td>29% vs placebo</td>
<td>↓ 0.4 % lesion area</td>
</tr>
<tr>
<td>Omnituzumab</td>
<td>49% vs placebo</td>
<td>↓ 0.4 % lesion area</td>
</tr>
<tr>
<td>Terifluodone</td>
<td>36% vs placebo</td>
<td>↓ 0.4 % lesion area</td>
</tr>
<tr>
<td>fingolimod</td>
<td>54% vs placebo</td>
<td>↓ 0.4 % lesion area</td>
</tr>
<tr>
<td>Mitoxantrone</td>
<td>65% vs placebo</td>
<td>↓ 0.4 % lesion area</td>
</tr>
<tr>
<td>Alemtuzumab</td>
<td>55% evaluable (6% female)</td>
<td>↓ 0.4 % lesion area</td>
</tr>
<tr>
<td>Natalizumab</td>
<td>69% vs placebo</td>
<td>↓ 0.4 % lesion area</td>
</tr>
<tr>
<td>Ocrelizumab</td>
<td>47% evaluable</td>
<td>↓ 0.4 % lesion area</td>
</tr>
</tbody>
</table>

* Efficacy: relapse definition / diagnostic criteria / population / comparator
** Efficacy metrics
PTX: Placebo
FRI = FLAIR lesion positive (enhancing lesions)

 Approaches to MS Treatment

- Escalation of chronic immunomodulatory/- suppressive treatment
- Induction and reconstitution, followed up by treatment of residual (innate) inflammation
- 3 principles: safety, efficacy and tolerability
- Optimize neurologic reserve, cognition and physical function by reducing disease activity
Reasons to Consider Switching Treatment

- Breakthrough disease activity
 - More than three lesions on MRI
 - More than one relapse in first year of treatment
 - Disability progression with EDSS
- JCV ab seroconversion
- Poor adherence
- Intolerable and severe medication side effects

Temporal effect on the immune cell system

<table>
<thead>
<tr>
<th>Near term</th>
<th>Mid term</th>
<th>Long Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day to week</td>
<td>Week to month</td>
<td>Month to Year</td>
</tr>
<tr>
<td>INF beta 1B</td>
<td>Fingolimod</td>
<td>Alemtuzumab</td>
</tr>
<tr>
<td>INF beta 1a</td>
<td>Siponimod</td>
<td>Ocrelizumab</td>
</tr>
<tr>
<td>Peginterferon</td>
<td>Ozanimod</td>
<td>Cladribine</td>
</tr>
<tr>
<td>Glatiramer acetate</td>
<td>Natalizumab</td>
<td>Mitoxantrone</td>
</tr>
<tr>
<td>Dimethyl Fumarate</td>
<td>Teriflunomide (w/o accelerated elimination)</td>
<td></td>
</tr>
<tr>
<td>Teriflunomide (with accelerated elimination)</td>
<td>Ofatumumab</td>
<td></td>
</tr>
</tbody>
</table>

When to STOP DMT in MS

- DISCO MS-PICORI study= DISContinuation of MS DMT
- Randomized controlled prospective study for individuals with MS age 55 or older.
- Participants will be randomized to one of the 2 groups: one continue with DMT and one discontinue medications.
- Estimated completion by February 2022.

Pregnancy Considerations

- Glatiramer acetate pregnancy Class B
- Interferons, FDA updated for Plegridy and Avonex in 4/2020
 - No longer contains Pregnancy category C due to human pregnancy registry.
- No washout period necessary for GA or interferons
- Dimethyl fumarate and Tysabri no wash out period required
- Must stop S1P modulators 3 months prior to conception
- Must stop Cladribine 6 months prior to conception
- Must stop Ocrelizumab and ofatumumab 6 months prior to conception (12 months in Europe)
- Teriflunomide use accelerated elimination to lower serum levels to below 0.03 mg/L

COVID-19 and Multiple Sclerosis

- SARS-CoV-2 triggers the innate immune system, on which DMTs have little effect
- DMTs should be continued
- Most DMTs do not increase risk of severe COVID-19 infection, with some exceptions
 - Possible: alemtuzumab, cladribine, ocrelizumab, rituximab
- Having MS does not make it likely to become severely ill or die
- Susceptible to severe disease similar subgroups to those observed with general population
 - >60, men, A.A or S. Asian, HTN, DM, heart/lung disease, obesity, patients with higher disability

COVID-19 vaccine and MS

- Recommendations from NMSS
 - COVID-19 vaccine is inactive and safe
 - Most DMTs should be continued as they will not affect response to vaccine
 - Some DMTs (alemtuzumab, cladribine, B-cell depleting drugs) may decrease the mounted response to vaccine
- Coordinate timing of vaccine with timing of DMT
 - If not on DMT already ideal to start oral/infusions (DMTs) 2-4 weeks after second dose of vaccine
 - If already on DMT for ocrelizumab or rituximab consider vaccine 12 weeks after last dose
 - Ocrelizumab no longer listing delayed after last dose for vaccine, wait 2-4 weeks post vaccine to resume next injection.
 - Cladribine no longer listing ideal timing for vaccine while on medication but consider wait 2-4 weeks post vaccine to resume
 - For IV steroids wait 5 days after
Repertoire of DMTs for patients with RRMS has increased over the recent years
- MOA and duration of effect on immune system need to be considered when selecting and changing DMTs
- Different routes of administration and dosing
- Different safety and efficacy profiles
- Greater opportunities for individualized treatment

Treatment needs to fit the needs of a given patient and their disease activity
- Adherence to treatment
- Comorbidities, family planning, age, safety
- Patient education

References
- Wynn et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Neurol 2011;76:1074